notes from Kenneth H. Rosen's Discrete Mathematics and Its
Applications , 7th ed. miscellaneous topics in discrete mathematics.
Induction and recursion
Induction
First used by Maurolico in 16th century to prove the sum of first n
odd positive integers equals n 2
. De Morgan was the first to formalize it in proofs in 1838,
and coined the term "mathematical induction".
despite its name, mathematical induction is not an induction. it's a
completely deductive argument, although it might seem inductive
(because an infinite number of cases are proven automatically).
Basis step: prove that conjecture holds true for first case
Inductive step: prove that if assumed true for an arbitrary case,
then the next case must also be true.
In combination, both facts imply that all cases are true. The truth at
the basis step "trickles down" to every case by virtue of also proving
step 2.
P ( 1 ) ∧
∀ k ( P ( k ) ⟹ P ( k + 1 ) ) ∀ k P ( k )
assumes well-ordering of set
doesn't give new formulas or conjectures, only proves them
no insight as to why theorem is true
Summation equations
1+2+3+...
triangular numbers: n ∈ ℕ ; ∀ n ( 1 + 2 + … + n = n ( n + 1 ) 2 ) n ∈ \mathbb{N} ; ∀n \left( 1+2+ \ldots + n =
\frac{n(n+1)}{2} \right)
basis step: 1 = 1 ( 1 + 1 ) 2 = 1
inductive step:
1 + … + k = k ( k + 1 ) 2 ⟹ 1 + … + k + ( k + 1 ) = ( k + 1 ) ( ( k + 1 ) + 1 ) 2 = ( k + 1 ) ( k + 2 ) 2 k ( k + 1 ) 2 ⏟ 1 + … + k + ( k + 1 ) = ( k + 1 ) ( k + 2 ) 2 k ( k + 1 ) + 2 ( k + 1 ) 2 = k 2 + k + 2 k + 2 2 = k 2 + 3 k + 2 2 = ( k + 1 ) ( k + 2 ) 2 \begin{aligned} \
1+\ldots+k = \frac{k(k+1)}{2} \implies 1+\ldots+k+(k+1) = \frac{(k+1)((k+1)+1)}{2} = \frac{(k+1)(k+2)}{2} \
\underbrace{\frac{k(k+1)}{2}}_{1+\ldots+k}+(k+1) = \frac{(k+1)(k+2)}{2} \
\frac{k(k+1)+2(k+1)}{2} = \frac{k^{2}+k+2 k+2}{2} = \frac{k^{2}+3 k+2}{2} = \frac{(k+1)(k+2)}{2}
\end{aligned}
alternative algebraic proof by child Gauss:
1 + 2 + … + ( n − 1 ) + n = ( n + 1 ) + … + ( n + 1 ) ⏟ n / 2 times = n 2 ( n + 1 ) 1+2+\ldots+(n-1)+n=\underbrace{(n+1)+\ldots+(n+1)}_{n/2
\text { times }}=\frac{n}{2}(n+1)
1+3+5+...
conjecture: ∑ i = 0 n 2 i + 1 = [ 1 , 4 , 9 , 16 , 25 , … ] = [ 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , … ] = n 2 ∑_{i=0}^n 2 i+1 = [1,4,9,16,25, \ldots] =
[1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, \ldots] = n^{2}
basis step: 1 = 1 2
inductive step:
1 + 3 + 5 + … + ( 2 k − 1 ) = k 2 ⟹ 1 + 3 + … + ( 2 k − 1 ) + ( 2 k + 1 ) = ( k + 1 ) 2 1 + 3 + 5 + … + ( 2 k − 1 ) ⏟ k 2 + ( 2 k + 1 ) = ( k + 1 ) 2 k 2 + ( 2 k + 1 ) = ( k + 1 ) 2 = k 2 + 2 k + 1 \begin{aligned} \
1+3+5+\ldots+(2k-1) = k^2 \implies 1+3+\ldots+(2k-1)+(2k+1)=(k+1)^2 \
\underbrace{1+3+5+\ldots+(2k-1)}_{k^2} + (2k+1) = (k+1)^2 \
k^2 + (2k+1) = (k+1)^2 = k^2 + 2k + 1
\end{aligned}
1+2+4+8+...
¿ 1 + 2 + 2 2 + 2 3 + … + 2 n = 2 n + 1 − 1
?, ∀ n ( n ∈ ℕ )
basis step: P ( 0 ) = 0 2 = 2 0 + 1 − 1 = 1
inductive step:
2 0 + 2 1 + … + 2 k = 2 k + 1 − 1 ⟹ 2 0 + 2 1 + … + 2 k + 2 ( k + 1 ) = 2 k + 2 − 1 2 0 + 2 1 + … + 2 k ⏟ 2 k + 1 − 1 + 2 ( k + 1 ) = 2 k + 2 − 1 ( 2 k + 1 − 1 ) + 2 ( k + 1 ) = 2 k + 2 − 1 2 ( 2 k + 1 ) − 1 = 2 k + 2 − 1 2 k + 2 − 1 = 2 k + 2 − 1 \begin{aligned} \
2^0 + 2^1 + \ldots + 2^k = 2^{k+1}-1 \implies 2^0 + 2^1 + \ldots + 2^k + 2^(k+1) = 2^{k+2}-1 \
\underbrace{2^0 + 2^1 + \ldots + 2^k}_{2^{k+1}-1} + 2^(k+1) = 2^{k+2}-1 \
(2^{k+1}-1) + 2^(k+1) = 2^{k+2}-1 \
2(2^{k+1}) - 1 = 2^{k+2} - 1 \
2^{k+2} - 1 = 2^{k+2} - 1
\end{aligned}
general geometric series
∑ j = 0 n a r j = a + a r + a r 2 + … + a r n = a r n + 1 − a r − 1 ; r ≠ 1 ∑_{j=0}^{n} a r^{j} = a + ar +ar^{2} + \ldots + ar^{n} =
\frac{ar^{n+1}-a}{r-1}; \; r ≠ 1
basis step:
P ( 0 ) : ∑ j = 0 0 a r j = a r 0 = a a r 0 + 1 − a r − 1 = a r 1 − a r − 1 = a ( r − 1 ) ( r − 1 ) = a \begin{aligned} \
P(0): \
∑_{j=0}^{0} a r^{j} =a r^{0}= a \
\frac{a r^{0+1}-a}{r-1} = \frac{a r^{1}-a}{r-1} = \frac{a(r-1)}{(r-1)} = a \
\end{aligned}
inductive step:
P ( k ) ⟹ P ( k + 1 ) : a r 0 + a r 2 + … + a r k = a r k + 1 − a r − 1 ⟹ a r 0 + a r 1 + … + a r k ⏟ a r k + 1 − a r − 1 + a r k + 1 = a r k + 2 − a r − 1 a r k + 1 − a r − 1 + a r k + 1 = a r k + 2 − a r − 1 a r k + 1 − a + ( r − 1 ) ( a r k + 1 ) = a r k + 2 − a a r k + 1 − a + a r k + 2 − a r k + 1 = a r k + 2 − a a r k + 2 − a = a r k + 2 − a \begin{aligned} \
P(k) \implies P(k+1): \
ar^{0} + ar^{2}+ \ldots + ar^{k} = \frac{a r^{k+1}-a}{r-1} \; \implies \; \underbrace{ar^{0} + ar^{1} + \ldots + ar^{k}}_{\frac{ar^{k+1}-a}{r-1}} + ar^{k+1} = \frac{ar^{k+2}-a}{r-1} \
\frac{ar^{k+1}-a}{r-1} + ar^{k+1} = \frac{ar^{k+2}-a}{r-1} \
ar^{k+1}-a + (r-1)(ar^{k+1}) = ar^{k+2} - a \
ar^{k+1} - a + ar^{k+2} - ar^{k+1} = ar^{k+2} - a \
ar^{k+2}-a = ar^{k+2}-a
\end{aligned}
Inequalities
n < 2n
n < 2 n ; ∀ n ∈ ℤ +
P ( 1 ) : 1 < 2 1
P ( k ) ⟹ P ( k + 1 ) :
k < 2 k ⟹ k + 1 < 2 k + 1 ⟹ k ⏟ + 1 < 2 k ⏟ + 1 ⟹ k + 1 < 2 k + 2 k ⏟ arbitrarily chosen, as long as inequality is preserved ⟹ k + 1 < = 2 ( 2 k ) = 2 k + 1 \begin{aligned} \
k<2^k & \implies k+1<2^{k+1} \
& \implies \underbrace{k}+1 < \underbrace{2^k}+1 \
& \implies k+1 < 2^k + \underbrace{2^k} \
& \text{arbitrarily chosen, as long as inequality is preserved} \
& \implies k+1 <= 2 (2^k) = 2^{k+1}
\end{aligned}
2n < n!
2 n < n ! ; n ≥ 4
P ( 1 ) : 2 4 < 4 !
P ( k ) ⟹ P ( k + 1 ) :
2 k < k ! ⟹ 2 k + 1 < ( k + 1 ) ! 2 ⋅ 2 k < ( k + 1 ) ! 2 ⋅ 2 k ⏟ < 2 ⋅ k ! ⏟ 2 ⋅ 2 k < ( k + 1 ) ⏟ k ! arbitrarily chosen, as long as inequality is preserved 2 k + 1 < ( k + 1 ) ! \begin{aligned} \
2^k<k! & \implies 2^{k+1}<(k+1)! \
& 2 \cdot 2^k<(k+1)! \
& 2 \cdot \underbrace{2^k}<2 \cdot \underbrace{k!} \
& 2 \cdot 2^k < \underbrace{(k+1)} k! \
& \text{arbitrarily chosen, as long as inequality is preserved} \
& 2^{k+1}<(k+1)!
\end{aligned}
Harmonic numbers
the m-th harmonic number, defined by:
H m = 1 + 1 2 + 1 3 + . . . + 1 m = ∑ n = 1 m 1 n
H_m=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{m}=∑_{n=1}^m \frac{1}{n}
satisfies the following inequality (i.e. partial sums of the harmonic
series satisfy it):
H 2 n ≥ 1 + n 2
H_{2^n} ≥ 1+\frac{n}{2}
proof by induction:
P ( 0 ) : H 2 0 = 1 ≥ 1 + 0 2
p ( k ) ⟹ p ( k + 1 ) :
H 2 k ≥ 1 + k 2 ⟹ H 2 k + 1 ≥ 1 + k + 1 2 ⟹ 1 + 1 2 + . . . + 1 2 k + 1 2 k + 1 + . . . 1 2 k + 1 ≥ 1 + k + 1 2 ⟹ H 2 k + 1 2 k + 1 + . . . + 1 2 k + 1 ≥ 1 + k + 1 2 ⟹ H 2 k + 1 2 k + 1 + . . . + 1 2 k + 1 ≥ ( 1 + k 2 ) + 1 2 k + 1 + . . . + 1 2 k + 1 ⏟ ⟹ H 2 k + 1 2 k + 1 + . . . + 1 2 k + 1 ≥ ( 1 + k 2 ) + 2 k ( 1 2 k + 1 ) ⟹ H 2 k + 1 2 k + 1 + . . . + 1 2 k + 1 ≥ ( 1 + k 2 ) + 1 2 ⟹ H 2 k + 1 ≥ 1 + k + 1 2 \begin{aligned} \
H_{2^k} ≥ 1+\frac{k}{2} & \implies H_{2^{k+1}} ≥ 1+\frac{k+1}{2} \
& \implies 1+\frac{1}{2}+...+\frac{1}{2^k}+\frac{1}{2^k+1}+... \frac{1}{2^{k+1}} ≥ 1+\frac{k+1}{2} \
& \implies H_{2^k}+\frac{1}{2^k+1}+...+\frac{1}{2^{k+1}} ≥ 1+\frac{k+1}{2} \
& \implies H_{2^k}+\frac{1}{2^k+1}+...+\frac{1}{2^{k+1}} ≥ \left( 1+\frac{k}{2} \right) + \underbrace{ \frac{1}{2^k+1}+...+\frac{1}{2^{k+1}} } \
& \implies H_{2^k}+\frac{1}{2^k+1}+...+\frac{1}{2^{k+1}} ≥ \left( 1+\frac{k}{2} \right) + 2^k \left( \frac{1}{2^{k+1}} \right) \
& \implies H_{2^k}+\frac{1}{2^k+1}+...+\frac{1}{2^{k+1}} ≥ \left( 1+\frac{k}{2} \right) + \frac{1}{2} \
& \implies H_{2^{k+1}} ≥ 1+\frac{k+1}{2}
\end{aligned}
This also proves that the harmonic series diverges even if it grows
slowly (in the order of the natural logarithm), because the integral
of the other side of the inequality diverges itself.
Figure - Blue: the m-th harmonic number (partial sum of harmonics). Green: ln(x) plus the Euler-Mascheroni constant. Red: the other side of the inequality.
Divisibility
often easier to prove using basic results in number theory.
Fermat's little theorem
with p=3.
( ∀ n ∈ ℕ ∧ n ≠ 0 ) 3 | n 3 − n
P ( 1 ) : 1 3 − 1 ≡ 0 ( m o d 3 )
P ( k ) ⟹ P ( k + 1 ) :
3 | k 3 − k ⟹ 3 | ( k + 1 ) 3 − ( k + 1 ) ⇒ 3 | ( k 3 + 3 k 2 + 3 k + 1 ) − ( k + 1 ) ⇒ 3 | ( k 3 − k ) + 3 ( k 2 + k ) ⇒ ( k 3 − k ) + 3 ( k 2 + k ) 3 ≡ 0 ( m o d 3 ) ⇒ ( k 3 − k ) 3 ≡ 0 ( m o d 3 ) ∧ 3 ( k 2 + k ) 3 ≡ 0 ( m o d 3 ) \begin{aligned} \
3| k^{3}-k\implies 3| \left( k+1\right)^{3}-\left( k+1\right) \
& \Rightarrow 3 | \left( k^{3}+3k^{2}+3k+1\right) -\left( k+1\right) \
& \Rightarrow 3 | \left( k^{3}-k\right) +3\left( k^{2}+k\right) \
& \Rightarrow \dfrac{\left( k^{3}-k\right) +3\left( k^{2}+k\right) }{3} ≡ 0 \; (mod \; 3) \
& \Rightarrow \dfrac{\left( k^{3}-k\right) }{3} ≡ 0 \; (mod \; 3) ∧ \dfrac{3\left( k^{2}+k\right) }{3} ≡ 0 \; (mod \; 3) \
\end{aligned}
The sum of multiples of n (3 in this case) must also be a multiple of n .
Sets
power set cardinality