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Abstract—Microblogging social networks are easily subverted
by automated fake identities that amass disproportionately large
influence. In this paper we present an effort to profile and screen
such kind of accounts from existing and original ground truth
obtained from the Twitter platform. Seventy-one explanatory
properties solely extracted from profile and timeline information
are evaluated and used to compare the efficacy of common
supervised machine learning methods at this classification task.
Results confirm that feasible and largely effective detection
devices can be constructed for the problem at hand.

I. INTRODUCTION

Microblogging is a form of Web publishing characterized
by very small text entries in the order of a few sentences,
navigated in reverse chronological order and sometimes en-
hanced with rich media. Since the late 2000’s, distributed
systems have been created to provide services and networks
for users who want to author a microblog or interact with other
microbloggers.

Together with its popularity; the ability to influence featured
taglines, promote content on user timelines and inflate profiles
has made of Twitter an attractive microblogging platform to
marketers and deceivers, who commonly employ fake accounts
to achieve their goals. For greater impact, campaign managers
and popularity builders orchestrate legions of hundreds or
thousands of Sybil accounts that do nothing but repeat propa-
ganda [1]. Automated accounts known as “Twitterbots” or sim-
ply “bots” are a tangential phenomenon to content pollution
and Sybil armies. Some strands of bots produce useful content
or serve as unoriginal and repetitive, yet non-malicious content
aggregators and personal assistants (sometimes even coexisting
with user-generated posts in a what is known as a hybrid or
“cyborg” account). The use of automated accounts, however,
greatly amplifies the influence of spammers, and contributes to
the amount of rather uninteresting and undesirable information
in Internet communities.

News about celebrities and political parties buying influence
from bot army operators abound, in tune with the findings of
external researchers and the testimony of organizations like
Twitter and Renren [1] [2]. We argue the consequences of
bots in social networks are two-fold, at best: presuming an
economic incentive behind operating Sybil armies, insofar as
those are tolerated by real users, the social network thrives
and the incentive for bots is kept; but even in balance some
parties will result invariably affected. For one, some platforms

sell their own ad space and therefore compete in their own
game with bot armies that are available for rental. Investors
and legitimate advertisers are wary of targeting their efforts at
a mixed bag of real and fake accounts. And of course, users
and external observers are presented with a false impression
of the size and dynamics of a social network; something that
could easily pass unnoticed to the untrained eye. When the
influence of an Internet social network is so profound that
a considerable portion of the population gets its news from
there, and even traditional journalism starts referencing back
to it; bot-based disruption operations of the scope and scale
witnessed to this day become a danger that should not be dealt
with lightly. The motivation behind this study stems from our
own necessity to filter out unreliable Twitter data, collected
for the purpose of performing other studies.

In this paper we explore the construction and evaluation
of an automated Turing test to tell computers and humans
apart (the “ATCHA” in the acronym CAPTCHA [3]), albeit
one designed for a narrow form of artificial agents common
to Twitter and similar microblogging social networks. We
employ and compare a number of supervised machine learning
techniques for this purpose. An intelligent agent is said to be
learning if it improves its performance on future tasks after
making observations about the world [4]. Learning algorithms
allow computer programs capable of prediction and pattern
recognition to be built empirically; that is, from illustrative
data and no a priori knowledge like explicit rules.

The paper is organized as follows: section II talks about
previous research and the state of the art in bot detection.
Section III describes our sample data and their origins. Sec-
tion IV elaborates on feature extraction and model selection.
Finally, section V evaluates the detection system and provides
conclusions.

II. RELATED WORK

Some work has been done to estimate the amount of
fraudulent user accounts on Twitter. In its 2013, 2014 and
2015 annual reports to the United States Securities and Ex-
change Commission; Twitter, Inc. claimed that Spam and fake
accounts represented about 5% of all monthly active users
(based on a sample of internally reviewed accounts). Quoting
from there, Spam is defined as “unsolicited, repeated actions
that negatively impact other users with the general goal of
drawing attention”. Monthly active users who accessed the
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site through third-party applications (as opposed to the website
or official mobile clients) were estimated to be 7%, 8.5%
and 8.5% in 2013, 2014 and 2015; respectively [5] [6] [7].
Third-party applications are possible thanks to Twitter’s public
application programming interface (API for short).

These two measures —Spam and API-using accounts—
are important in the study of bot detection because evidence
suggests that most Spam on Twitter is the product of Sybils
relying on third-party tools to communicate to Twitter via
the API [8]. Therefore, Spam and API-using accounts could
respectively serve as rough surrogates for the lower and upper
bounds to the bot-to-human ratio on Twitter.

The connection between Spam and bots has been exploited
in the past by similar supervised machine learning approaches
at bot detection. In 2010, Wang et al. studied the application of
Bayesian classifiers commonly found in e-mail Spam detection
to recognize unsolicited messages in the early Twitter [9] [10].
In 2012, Chu et al. carried out an extensive study on the
characterization of Twitter bots and cyborgs, and resorted to
supervised machine learning methods to build a ternary clas-
sifier with an average accuracy of 96% upon cross-validation.
10.5% of their full dataset (consisting of over half a million
accounts) was predicted to be a bot according to this classifier
[8].

Using a labeled dataset by Lee et al. from 2011 which
contains some tens of thousands of potential spammers, le-
gitimate users and their tweets [11]; Ferrara et al. trained a
binary classifier that could predict with 95% accuracy the
class those accounts belonged to. [12] [13]. This system is
available online as a web-service. Lee and colleagues’ dataset
also proved useful as a starting point to some of the contestants
in the Twitterbot recognition competition organized by the
US Defense Advanced Research Projects Agency (DARPA)
in 2015 [14].

Similarly, Alsaleh et al. and Yang et al. obtained good
results for Twitter in the former’s case, and for an equivalent
Chinese microblogging network called Sina in the latter’s
[15] [16]. Cerén-Guzman et al. presented a similar effort for
detecting spammers during the 2014 Colombian presidential
election, also with promising results [17].

Most machine learning studies mentioned so far revolve
around the use of supervised classifiers on features pertaining
to account information and posting activity patterns, and less
prominently to interaction graphs and simple linguistic cues
or blacklisted elements buried within posts. However, parallel
lines of research build more prominently on statistical analysis
of language [18] and sentiment analysis [19] in conjunction
with supervised methods; while others like [20] have explored
the possibility of performing semi-automatic clustering and
ground-truth creation, based on the same user account and
tweeting features.

III. DATA COLLECTION AND GROUND TRUTH CREATION

We leveraged some of the labeling work done by anonymous
project BotsDeTwitter! (@BotsPoliticosNo) to build half of
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Fig. 1. Six months worth of data from 142 Sybil timelines in our dataset,
working in synchronicity to leave a common activity trail in time.

our dataset. BotsDeTwitter is a blog with a relentless record of
uncovering and documenting Sybil networks from the Spanish-
speaking world, mostly in the context of Spain politics. Rather
than sampling at random, the method used by BotsDeTwitter
begins by taking notice of election front-runners and their
social surroundings, for instance their retweeters. These users’
accounts and part of their timelines are extracted via the
Twitter API. Posts are plotted in time to reveal account cre-
ation patterns and uncannily synchronized retweeting patterns
(see Fig 1). Social graphs reveal anomalies that trace back
not only to whomever is requesting or benefiting from the
service, but sometimes also to army operators themselves who
don’t hesitate to advertise their powers and inflate their own
personas. Moreover, account samples are individually verified,
just to find out that everything; from profile pictures taken from
Web searches to the strange and static choice of automatable
application programs used to post, conforms to the fakery
hypothesis.

We started with 1598 different Sybil accounts belonging
to five different armies from Spain and Argentina that were
detected throughout the second half of 2015. Apart from
naming and shaming, BotsDeTwitter’s ultimate goal is to
report bot accounts to be taken down, further diminishing the
chances of finding them online. For this reason we had to settle
with a final sample of 853 bot profiles and the latest 1000
tweets in each one’s timeline. They were extracted over the
course of one week. This was complemented with 791 human
accounts manually labeled between April and June 2016, most
of which belong to Mexican users.

IV. FEATURE ENGINEERING

User profiles, their timelines and network interactions offer
three different information sources for feature generation.
In our study only user profiles and timelines were used to
generate an initial feature set of 71 inexpensive variables.
We further separate timeline-based features into metadata-
based and content-based ones. Metadata refers to all acces-
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sory information supporting or describing the main content.
Such a number of features may appear excessive on first
account, but many of them naturally emerge from the cal-
culation of standard statistical estimators (such as centrality
and dispersion measures) of a smaller number of random
distributions hidden in the data. These distributions include
tweet interrarival times, tweets ranging over different time
periods, over posting sources; and the number of interactive
elements (URLs, hashtags and mentions) per tweet. In fact
our feature set is far from complete, specially in the area of
content-based measures, where statistical analysis of language
alone enjoys much wider use. Table I presents in more detail
all candidate explanatory variables considered for this study.

Of interest is Shannon entropy —entropy henceforth—
which measures a discrete distribution’s theoretical pure in-
formation content; and is given by the expected value of the
“surprisal” caused by the outcomes of the random variable at

play:
H(X) = E[-log,(P(X))] = — ZP(:@) logy, (P(x)). (1)

where E[Y] is the expected value function and P(z;) the
probability mass function of discrete random variable X. The
choice of b only determines what units go into the equation.
H(X) is in bits for b = 2 [21].

Besides estimating the amount of information contained
in strings, entropy proves useful to distinguish humans from
bots based on their temporal activity patterns. The underlying
idea is that bot activity will be more predictable (or perhaps
completely random if programmed to do so), whereas humans
will exhibit less strict behaviors.

A word of caution: variables which are more amenable
to continuous distributions such as interarrival times (whose
accuracy is measured to the second) as well as anemic samples
from truly discrete distributions (e.g. a few tweet timestamps
distributed over the days of the year) are immune to the
statistical formulation of entropy, which by definition depends
on a representative sample in order to be a good estimator of
information content. For this reason domain-specific lossless
compression algorithms are sometimes brought in, in lieu of
entropy, to address the same question of information content.

A. Exploring the data

Unlike many other classification models, decision trees
have a representation that is transparent to people; they are
easy to interpret and offer an attractive tool to grow new
insights on how the two user account classes differ in high-
dimensional feature space. Although preliminarily, we can
offer a brief recollection of some important differences that
were discovered while feeding computed features to decision
trees.

In accordance to [8], account creation time alone constitutes
a big difference between bots and humans in the data; not just
because microblogging bots are a more recent invention that

>The meaning of these features should be obvious from their names.

TABLE I
LI1ST OF FEATURES

Feature

Details

created at [8], [12], [13]
default profile image [14], [15]
description entropy
description hashtags count
description length
description mentions count
description URLs count
empty description [17]
empty location
empty URL
statuses count [8], [12]-[14], [16]
favourites count [15]
favourites per status
favourites per time
followers count [17]
followers per friend [8], [15]

Account creation time
Whether account uses a stock image.
See (1)

Amount of hashtags in description
2
Amount of mentions in description
Amount of URLs in description
Whether description is empty
Whether location is empty
Whether URL is empty
2
2
2
favourites/account_age
2

2

URLs-per-tweet mean
URLs-per-tweet S.D.

é’ followers per time followers_count/account_age

<] friends count [17] 2

S friends per time [17] friends_count/account_age

% lang [12], [13] User locale

listed count Number of lists the user is part of
listed count per followers listed_count/ followers_count
listed count per time listed_count/account_age
location entropy See (1)
location length 2
name entropy See (1)
name length [12], [13] 2
same-description user proportion Ratio of users sharing same description
same-location user proportion Ratio of users sharing same location
same-name user proportion Ratio of users sharing same name
same-screen name user proportion Ratio of users sharing same screen name
same-URL user proportion [14] Ratio of users sharing same URL
screen name entropy See (1)
screen name length [12], [13] 2
statuses per time statuses_count/account_age
verified [8], [17] Is the verification badge present?
automated sources proportion See [8], [14], [17]
delay mean [8], [12], [13], [17] Average interrarival time
delay S.D. [8], [12], [13], [17] Interrarival time (std. dev.)
ms delay mean [12], [13] Original status delay (average)
ms delay S.D. [12], [13] Original status delay (std. dev.)
ms proportion [12]-[15], [17] Original statuses proportion
number of sources [8], [14] Number of different posting sources

- tweets-mod-day S.D [8], [17] Hour of the day (std. dev.)

g tweets-mod-week entropy [8], [17] Day of the week (entropy)

"% tweets-mod-week mean [8], [17] Day of the week (average)

E tweets-mod-week S.D. [8], [17] Day of the week (std. dev.)

2 tweets-mod-year entropy Day of the year (entropy)

= tweets-mod-year mean Day of the year (average)

E tweets-mod-year S.D. Day of the year (std. dev.)

- tweets-per-source mean [8], [14] Average number of statuses per source
tweets-per-source S.D. [8] Statuses per source (std. dev.)
tweets-per-source entropy Statuses per source (entropy)

replies proportion [12]-[15], [17] Replies proportion
reply delay mean [12], [13] Reply delay (average)
reply delay S.D. [12], [13] Reply delay (std. dev.)
retweet delay mean [12], [13] Repost interarrival time (average)
retweet delay S.D. [12], [13] Repost interarrival time (std. dev.)
retweets proportion [12]-[15], [17] Repost proportion
hashtags-per-tweet entropy See (1)
hashtags-per-tweet mean See [14], [15], [17], [20]
hashtags-per-tweet S.D. 2

;E) mentions-per-tweet entropy See (1)

= mentions-per-tweet mean See [14], [15], [17], [20]

S mentions-per-tweet S.D. 2

2 tweets-with-hashtags proportion See [8]

5 tweets-with-mentions proportion See [8]

E tweets-with-URLs proportion See [8]

URLs-per-tweet entropy See (1)

See [14], [15], [17], [20]
2
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only appeared after the popularization of microblogging sites.
Malicious accounts need to be replenished more frequently to
cope with the janitorial endeavours going on in the platform.

Timelines where less than 1.8% of all tweets were replies
were 5.56 times more likely to belong to a Sybil. Moreover,
in 64% of all Sybil profiles the proportion of replies was less
than 0.5%; suggesting that these accounts do not engage in
conversation in any substantive way. An account with less
than 1.8% of replies and less than 432 followers was almost
guaranteed to belong to a Sybil. On the other hand, some
famous human and organizational accounts don’t engage in
much conversation either.

Interestingly, Sybils on average presented more spread out
and entropic distributions of interactive elements per tweet.
For instance, a bot’s distribution of mentions per tweet is 7.6
times as likely as a human’s to offer more than 2.3 bits. This
could mean that humans almost never try to go past two or
three mentions per tweet, even if on average they might insert
as many mentions as bots do. High proportion of tweets with
hashtags is indicative of Sybil behavior too.

B. Variable Importance

Effectively finding the best feature combination from a
feature set features (by exhausting its power set) takes
Q(2features]) steps. Consequently, combinatorial explosion
readily renders the problem intractable for cardinalities as big
as ours. Machine learning as a field is constantly pushing
to find novel ways of doing feature learning, and artificial
intelligence has developed a number of search methods to help
approximate solutions to optimization problems. Our approach
to reduce dimensionality consists in ordering features by some
sort of predictive relevancy before they are put to test in a
model. Thus all features were ranked by importance according
to four distinct measures:

o The RELIEF feature selection algorithm for classification
problems (for a sample size of 40 instances and 20
neighbors per instance) [22].

o Variable importance according to a single decision tree
trained with full data.

o Mean accuracy decrease and
« mean Gini importance from the random forest probabilis-

tic algorithm, [23] [24] also trained to classify the whole
dataset.

A random forest is an ensemble of different decision trees,
each one casting its vote to reach a consensus at the forest
level. High mean accuracy decrease and high mean Gini
decrease translate into variable importance. In short, determin-
ing decrease in accuracy involves eliminating or permuting a
feature to observe changes to the classification error. As for
decrease in Gini node impurity, whenever a node is split, its
Gini importance is calculated from the children nodes and
compared against their own coefficients. A random forest
implementation can compute both mean accuracy and Gini
decreases transparently during the construction phase of the
classifier.
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Fig. 2. Normalized average variable importance.

Finally, we took the average variable importance from the
four previous rankings, under the assumption that features
which are favorably selected for by more methods are more
likely to provide explanatory power to a variety of these.
Scores were normalized to a common scale prior to calculating
the arithmetic mean so that no contribution is favored. Results

are shown in Fig. 2.

C. Selection by Validated Classification

Once features had been sorted by relevance, we proceeded
to assess the accuracy of five types of supervised classi-
fiers: support vector machines, decision trees, naive Bayes,
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Fig. 3. Accuracy as more features of decreasing importance are considered.

random forest and single-hidden-layer feedforward artificial
neural networks (also known as the multilayer perceptron).
[4] [25] Linear and radial kernels were tested for support
vector machines, but only linear ones will be considered below
since they obtained better results. Decision trees were obtained
using a recursive partitioning algorithm and pruned to avoid
overfitting.

On the first run all classifiers were trained using the single
best variable; accuracy was measured using 10-fold cross-
validation. In each following round the next best variable was
added to the mix, and was preserved only by those classifier
methods whose accuracy did not shrink from the appearance
of the new variable (also using a 10-fold cross-validation
to measure accuracy and compare results). Otherwise the
offending variable was never reconsidered for that particular
classifier. This sort of greedy hill climbing guided by a
feature ordering not only guarantees stable improvement on
previous results, but also seemed to improve some of the
classifiers’ long-term performance with no visible downsides.
Naive Bayes’ best result used to be 3% lower when allowed
to accumulate destructively-interfering variables, and accuracy
quickly plummeted after a few ones. Since variables that are
more likely strongly correlated with the dependent class are

considered first, we infer there’s little room for improvement
between our results and a hypothetical, globally optimum
variable selection.

Results are shown in Fig. 3. Features are ranked by de-
creasing importance from left to right: at any given point all
classifiers have been exposed to all features to the left of that
point, inclusive. Note that this allows meaningful benchmark-
ing among classifiers, with one caveat: as mentioned before,
the exact feature combination leading to a result doesn’t
include features that were deemed counterproductive when
first considered. These missing features are shown as dotted
line segments in the plots. Features that negatively impacted
all five methods were omitted for brevity.

V. RESULTS

From Fig. 3 we observe that the highest average accuracy
(94%) was obtained with a random forest operating on 19
features, although gains were not as dramatic after the first
6. A breakdown of both error types for this particular model
appears in the confusion matrix at table II.

The relatively low variability of results across classifiers
reinforces the idea that feature quality and feature subset
selection are playing an important role in accurate prediction.
Despite converging towards 91%-92%, the remaining methods
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TABLE 11
CONFUSION MATRIX (RANDOM FOREST)
Prediction | Human | Bot
Human 677 64
Bot 19 669

did not do similarly well in terms of growth; for naive Bayes
required 23 features to reach an accuracy level similar to a
decision tree which could get there using only 10 of them.
The short-lived supremacy and subsequent stagnation of neural
networks was probably due to an increase in input neurons,
which pushed training phases to the predefined time limit.
Even so, neural networks had the most consuming learning
process of all classifiers.

Later on, the aforementioned winner was used to provide
a response to 5063 fresh and unlabeled Mexican accounts.
13.5% were found to be potential bots. Upon manual inspec-
tion of a loose sample of results we found ourselves seldom di-
verting from the automatic decision. Heavy retweeters remain
typical among suspect Sybils, and many of them unsurpris-
ingly relayed great amounts of politically opinionated, partisan
messages from prominent political stakeholders during the last
Mexican elections cycle. Accounts set up to automatically
forward repetitive notifications —from activity reported by
places like Youtube or Instagram— also form a large subgroup
within the identified accounts.

At the time of writing we are tweaking the last details of
a Web service, available at datanlab.com, and backed by this
classifier. We hope to provide a solution to any individual
or organization interested in detecting Twitter Sybil accounts,
starting from our geographic, cultural and political neighbor-
hood.
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